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The energy E�c /a� for a bcc element stretched along its �001� axis �the Bain path� has a minimum at
c /a=1, a maximum at c /a=�2, and an elastically unstable local minimum at c /a��2. An alternative path

connecting the bcc and fcc structures is the rhombohedral lattice. The primitive lattice has R3̄m symmetry, with
the angle � changing from 109.4° �bcc�, to 90° �simple cubic�, to 60° �fcc�. We study this path for the
non-magnetic bcc transition metals �V, Nb, Mo, Ta, and W� using both all-electron linearized augmented plane
wave and projector augmented wave VASP codes. Except for Ta, the energy E��� has a local maximum at
�=60°, with local minima near 55° and 70°, the latter having lower energy, suggesting the possibility of a
metastable rhombohedral state for these materials. We first examine the elastic stability of the 70° minimum
structure, and determine that only W is elastically stable in this structure, with the smallest eigenvalue of the
elastic tensor at 4 GPa. We then consider the possibility that tungsten is actually metastable in this structure by
looking at its vibrational and third-order elastic stability.
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I. INTRODUCTION

Consider a periodic crystal with one atom in a rhombohe-
dral unit cell. For a fixed rhombohedral angle �, find the
minimum energy of the crystal as a function of unit cell
volume. As a function of �, this curve must have several
extrema: �a� at �=60°, corresponding to a face-centered cu-
bic �fcc� structure, �b� at �=90°, corresponding to a simple
cubic �sc� structure, and �c� at �=109.471°, corresponding to
a body-centered cubic �bcc� structure. Given our physical
intuition that the fcc and bcc structures are close in energy
for most elements, we would naively expect that if an ele-
ment has a bcc ground state, then E�bcc��E�fcc��E�sc�,
where E�bcc� is the global minimum, E�sc� is a local maxi-
mum, and E�fcc� is a local minimum. Previous calculations1

show that this fcc structure has the elastic constant
C11–C12�0, indicating instability with respect to a tetrago-
nal distortion. However, the expectation that the fcc structure
is a local minimum of the rhombohedral structure would
require that C44 be positive for the fcc lattice.

This turns out not to be the case. Wang, Šob, and
co-workers2,3 have shown that C44 is negative for fcc vana-
dium, niobium, molybdenum, and tungsten. We have per-
formed similar calculations, as in Fig. 1 for tungsten, which
plots the energy versus rhombohedral angle. The fcc angle,
�=60°, is a local maximum, and there are two local minima
at ��57.5° and ��66.4°. This rhombohedral structure is
the same type found in �-Hg,4 where �=70.5°, so we will
refer to it by the �-Hg Strukturbericht5 designation A10.

Reference 1 previously considered a similar situation for
tetragonal strains for the fcc and bcc transition and noble
metals. There, symmetry requires the existence of a local
minimum in the total energy of the crystal as a function of
tetragonal strain. When the local minimum was then tested
for stability, it was found that the minimum was always un-
stable, meaning that the transition and noble metals do not
have free-standing metastable tetragonal phases at zero tem-
perature and pressure.

We can now address similar questions for the A10 struc-
ture described above. Specifically, we first �Sec. II� evaluate

the energy of the five non-magnetic bcc transition elements
�V, Nb, Mo, Ta, and W� as a function of rhombohedral angle.
For those elements �all except Ta� which show a minimum at
��60° we then �Sec. III� compute the elastic constants of
the equilibrium A10 rhombohedral structure. Most of the el-
ements �all except W� are unstable with respect to elastic
deformation. The surviving element �W� is tested for vibra-
tional stability �Sec. IV�, and shown to have no imaginary
phonon frequencies within the harmonic approximation. Fi-
nally, we show �Sec. V� that for tungsten there is an early
breakdown of Hooke’s law for the A10 phase, so that none of
the elements exhibit rhombohedral metastability. Section VI
concludes by considering possible cases where the A10
phase might be grown epitaxially.

II. STRAIN ENERGY

We consider the nonmagnetic transition metals with body-
centered cubic ground states V, Nb, Mo, Ta, and W, comput-
ing the energy of each structure using an all-electron general-
potential linearized augmented plane wave �LAPW� code,6

including local orbitals7 to represent the �3s ,3p� semicore
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FIG. 1. First-principles total energy of tungsten �per atom� as a
function of the rhombohedral angle, minimizing the total energy as
a function of volume at each point.
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orbitals in vanadium, the �4s ,4p� orbitals in niobium and
molybdenum, the �4f ,5s ,5p� orbitals in tantalum, and the
�5s ,5p� orbitals in tungsten. All computations use the stan-
dard Kohn-Sham8 formulation of density functional theory9

and the parametrization of the local density approximation in
Ref. 10. We carefully checked the convergence of the energy
as a function of �a� plane-wave cutoff, setting RKmax=8.5
and �b� k-point sampling,11 using meshes with up to 1513
points in the irreducible Brillouin zone for structures with
��60° and a Fermi broadening scheme with a broadening
temperature of 5 mRy. Our estimated error due to k-point
summation is less than 0.1 mRy /atom for all systems. We
also checked several of the calculations using the Vienna
Ab-initio Simulation Package12–14 �VASP� and the projector
augmented wave �PAW� formalism,15,16 finding results in
close agreement the all-electron LAPW method.

Table I reproduces the calculations of Ref. 3, showing the
structural data for the bcc, fcc, and A10 �rhombohedral�
phases, as well as the energy of the bcc and A10 phases
relative to the fcc structure. Note that, as in Ref. 3, tantalum
is stable with respect to a rhombohedral distortion of the fcc
lattice. Since we have previously shown1 that C11−C12 is
negative in this case, we eliminate tantalum from our search
for new metastable states.

III. ELASTIC STABILITY

V, Nb, Mo, and W all have a lower energy in the A10
structure with ��70° than in the fcc structure. We have not,

of course, shown that these states are metastable. To check
that, we first determine the elastic behavior of these materials
in the rhombohedral phase, using the finite strain method for
determining elastic constants.17,18 The A10 structure has

space group symmetry R3̄m and so has six independent elas-
tic constants.19 We calculate the elastic constants by comput-
ing the total energy as a function of the elastic strain con-
stants ei,

20,21 fitting this to the quadratic form

E = E0 + V0�
1/2C11�e1

2 + e2
2�

+ C12e1e2

+ 1/2C33e3
2

+ C13�e1 + e2�e3

+ C14�e1 − e2�e4

+ 1/2C44�e4
2 + e5

2�
+ C14e5e6

+ 1/4�C11 − C12�e6
2

� + O�ei
3� , �1�

and determining linear combinations of the Cij using the
strains described in Table II. The resulting elastic constants
are given in Table III.

The Born criterion22 requires that all of the eigenvalues of
the tensor implied by Eq. �1� be positive. From Table III we
immediately see that both vanadium and niobium have C44
�0, violating the Born criterion. While all of the diagonal
elastic constants for molybdenum are positive, the smallest
eigenvalue of the elastic tensor is negative. Therefore in the

TABLE I. Structural parameters and energy relative to the fcc
structure for the bcc, fcc, and A10 �rhombohedral� structures. V is
the volume/atom of the minimum energy structure, � is the rhom-
bohedral angle, and a and c are the lattice constants of the corre-
sponding hexagonal representation. �E is the energy difference
�meV/atom� with respect to the fcc phase. Negative energies for the
A10 phase indicate possible metastable structures.

Element Structure V �Å� � a �Å� c �Å� �E

V bcc 12.532 109.471 −283

fcc 12.984 60.000 0

rhomb. 12.793 68.994 2.81 5.62 −28

Nb bcc 17.114 109.471 −366

fcc 17.727 60.000 0

rhomb. 17.514 68.755 3.11 6.27 −89

Mo bcc 15.074 109.471 −430

fcc 15.260 60.000 0

rhomb. 15.435 67.615 2.96 6.11 −53

Ta bcc 17.129 109.471 −292

fcc 17.687 60.000 0

rhomb. 17.687 60.000 0

W bcc 15.490 109.471 −485

fcc 15.747 60.000 0

rhomb. 15.892 66.433 2.96 6.27 −70

TABLE II. Finite strains used to determine linear combinations
of elastic constants in the A10 structures described in Table I, using
the methods of Refs. 17 and 18 with the quadratic expansion �1�.
For a given elastic constant, all unlisted strain parameters are set to
zero.

Elastic constant Strains

C11+C12 e1=e2

C33 e3

C11+C12+2C33−4C13 e1=e2= �1+e3�−1/2−1

C11−C12 e2=−e1 / �1+e1�
C44 e3=1 /4e4

2

C11−C12+2C44+4C14 e6=e5, e1=1 /2e5
2

TABLE III. Elastic constants �in GPa� for the A10 structures of
Table I, using the finite strains in Table II and the quadratic expan-
sion �1�. Cmin is the linear combination of elastic constants which
gives the smallest eigenvalue of the elastic tensor implied by Eq.
�1�.

Element C11 C12 C13 C33 C14 C44 Cmin

V 235 203 139 279 10 −60 −62

Nb 221 195 146 322 −2 −22 −22

Mo 376 163 214 493 52 15 −9

W 414 215 233 561 −46 27 4.5
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A10 structure vanadium, niobium, and molybdenum are all
elastically unstable. The remaining element in the table,
tungsten, has a positive definite elastic tensor, and so may be
metastable in the A10 state.

IV. VIBRATIONAL STABILITY OF A10 TUNGSTEN

For complete metastability, a crystal must be stable
against small vibrations of any atom, i.e., there can be no
imaginary phonon frequencies. For A10 tungsten we com-
pute frequencies via the frozen phonon approximation,23 us-
ing the FROZSL program24 to generate supercells, computing
the change in energy versus amplitude by LAPW calcula-
tions, and determining the phonon frequency assuming har-
monic response.

We make a limited sample of the Brillouin zone at the
points shown in Table IV, which also shows the phonon fre-
quencies for the different polarizations at each k point. The
phonon frequencies for tungsten are all positive definite. This
is a rather small collection of k points, and is certainly not
exhaustive. However, since the elastic tensor is positive defi-
nite, as we saw in the previous section, we know that the
long-wavelength phonons are real,21 and it is unlikely that
there are any other “soft” phonon modes in the crystal. We
therefore conclude that, based on the harmonic approxima-
tion, A10 tungsten should be metastable at zero temperature.

V. NONLINEAR STRAINS

Though we have shown that A10 tungsten is harmonically
metastable, the low value of the smallest elastic tensor eigen-
value, 4.5 GPa, is worrisome, since typically elastic constant
calculations have numerical errors of this order. Thus it may
be that this elastic constant is zero, or even slightly negative.
To test this, we look at the eigenvectors of the elastic matrix
described by Eq. �1�. The eigenvector associated with the
smallest eigenvalue, 4.5 GPa, can be roughly approximated
by the elastic strain

e1 = − e2 = 1/4e4,

e3 = − �8 − 3e4 − e4
2�/�4 + e4�2,

and

e5 = e6 = 0, �2�

where the value of e3 is chosen to conserve the unit cell
volume for arbitrary values of e4. The elastic response of this
strain should yield the energy

E�e4� = E0 + V�1/4�C11 − C12� + C14 + C44�e4
2 + O�e4

3� ,

�3�

where 1 /4�C11−C12�+C14+C44�4.5 GPa. Our computed
E�e4� for 	e4 	 �1 /10 is shown in Fig. 2.

For very small strains �e4�0.01�, the energy �E=E�e4�
−E�0� is very flat, and the elastic constant is indeed very
close to zero. For larger positive strains, however, the energy
begins to decrease. We conclude that the A10 tungsten struc-
ture with parameters given in Table I is, in fact, unstable with
respect to the cubic and higher terms in Eq. �1�, and that
there is at best a very small region where the elastic relation-

TABLE IV. Computed phonon frequencies for A10 tungsten
�Table I�, calculated as described in the text. Frequencies are in
inverse wave numbers �cm−1�. The k points used are shown in the
figure.

x y

z

Γ

L

F

T

Λ1/4

Σ1/8Σ1/4

Symmetry Frequencies

T 124 124 217

L 83 89 216

F 128 148 214

Σ (1/8) 60 69 126

Σ (1/4) 67 138 187

Λ (1/4) 63 63 157

TABLE V. Room-temperature equilibrium nearest-neighbor dis-
tances for the close-packed planes of several fcc and hcp elements,
and the mismatch with the A10 tungsten nearest-neighbor distance
of 2.96 Å. We show both the mismatch with the experimental lattice
constant25 and the LDA lattice constant.

Element Experiment LDA

RNN Mismatch RNN Mismatch

fcc elements

Al 2.86 −3.4% 2.81a −4.9%

Ag 2.89 −2.4% 2.84a −4.0%

Au 2.88 −2.7% 2.87b −2.9%

hcp elements

Ti 2.95 −0.3% 2.87b −2.9%

Cd 2.98 0.7% 2.91c −1.7%

aReference 26.
bReference 27.
cComputed using the VASP code �Refs. 12–14� within the PAW
�Refs. 15 and 16�.
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FIG. 2. Energy �3� per atom of rhombohedral tungsten as a
function of the strain given in Eq. �2�.
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ship �3� holds. We are therefore left with the conclusion that
none of the non-magnetic bcc transition metals has a stable
A10 phase, even though Table I shows that a small rhombo-
hedral distortion from the fcc structure actually lowers the
energy of the system.

VI. CONCLUSION: EPITAXIAL GROWTH?

Even though we have shown that the free standing rhom-
bohedral �A10� structures do not exist, it may be possible to
create it by epitaxy, if a suitable substrate can be found. As
seen in Fig. 2, the energy of A10 tungsten does not change
appreciably for strains e4�0.05, so small lattice mismatches
can be easily tolerated. Growing �0001� planes of rhombo-
hedral tungsten requires a close packed base of �111� fcc
planes or �0001� hcp planes matching the nearest-neighbor
distance of 2.96 Å �from Table I�. Table V lists candidate
elements for such a substrate, showing close-packed nearest
neighbor distances obtained from experiment25 and first-

principles LDA calculations.26,27 Comparing to experiment,
we note that titanium is a close match, having a 0.3% smaller
nearest-neighbor distance than our A10 tungsten structure,
and cadmium is a close second, with a nearest-neighbor dis-
tance that is 0.7% larger. Comparing to theory, cadmium is
by far the best choice, with a nearest-neighbor mismatch of
−1.7%. We therefore suggest that experimentalists who wish
to look for A10 tungsten consider titanium and cadmium
surfaces for the substrate. The search for this phase may be
complicated its large energy �485 meV� above the bcc phase
and the presence of the A15 tungsten phase, which is only
97 meV /atom above the bcc phase.
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